On the Role of Sensory Feedbacks in Rowat–Selverston CPG to Improve Robot Legged Locomotion
نویسندگان
چکیده
This paper presents the use of Rowat and Selverston-type of central pattern generator (CPG) to control locomotion. It focuses on the role of afferent exteroceptive and proprioceptive signals in the dynamic phase synchronization in CPG legged robots. The sensori-motor neural network architecture is evaluated to control a two-joint planar robot leg that slips on a rail. Then, the closed loop between the CPG and the mechanical system allows to study the modulation of rhythmic patterns and the effect of the sensing loop via sensory neurons during the locomotion task. Firstly simulations show that the proposed architecture easily allows to modulate rhythmic patterns of the leg, and therefore the velocity of the robot. Secondly, simulations show that sensori-feedbacks from foot/ground contact of the leg make the hip velocity smoother and larger. The results show that the Rowat-Selverston-type CPG with sensory feedbacks is an effective choice for building adaptive neural CPGs for legged robots.
منابع مشابه
Using the Adaptive Frequency Nonlinear Oscillator for Earning an Energy Efficient Motion Pattern in a Leg- Like Stretchable Pendulum by Exploiting the Resonant Mode
In this paper we investigate a biological framework to generate and adapt a motion pattern so that can be energy efficient. In fact, the motion pattern in legged animals and human emerges among interaction between a central pattern generator neural network called CPG and the musculoskeletal system. Here, we model this neuro - musculoskeletal system by means of a leg - like mechanical system cal...
متن کاملGait Generation for a Bipedal System By Morris-Lecar Central Pattern Generator
The ability to move in complex environments is one of the most important features of humans and animals. In this work, we exploit a bio-inspired method to generate different gaits in a bipedal locomotion system. We use the 4-cell CPG model developed by Pinto [21]. This model has been established on symmetric coupling between the cells which are responsible for generating oscillatory signals. Th...
متن کاملConfigurable Embedded CPG-based Control for Robot Locomotion
Recently, the development of intelligent robots has benefited from a deeper understanding of the biomechanics and neurology of biological systems. Researchers have proposed the concept of Central Pattern Generators (CPGs) as a mechanism for generating an efficient control strategy for legged robots based on biological locomotion principles. Although many studies ha...
متن کاملBasic Concepts of the Control and Learning Mechanism of Locomotion by the Central Pattern Generator
Basic locomotor patterns of living bodies, such as walking and swimming, are produced by a central nervous system that is referred to as the CPG (central pattern generator). In vertebrates, the CPG is located in the spinal cord and a burst signal from the brainstem induces a periodic activity in the CPG. The firing pattern of the CPG is strongly affected by sensory feedback signals from the mus...
متن کاملBiologically-Inspired Locomotion Controller for a Quadruped Walking Robot: Analog IC Implementation of a CPG-Based Controller
The present paper proposes analog integrated circuit (IC) implementation of a biologically inspired controller in quadruped robot locomotion. Our controller is based on the central pattern generator (CPG), which is known as the biological neural network that generates fundamental rhythmic movements in locomotion of animals. Many CPG-based controllers for robot locomotion have been proposed, but...
متن کامل